Avançar para o conteúdo principal

A Grande Pirâmide de Gizé pode focar energia eletromagnética nas suas câmaras

Um estudo recente de uma equipa de físicos permitiu concluir que a Grande Pirâmide de Gizé, no Egipto, pode concentrar energia eletromagnética nas suas câmaras internas e sob a sua base.

Este enorme “aranha-céu”, construído sem computadores ou máquinas complexas, têm fascinado historiadores e arqueólogos durante séculos. Agora, com a recente pesquisa, pode trazer mais uma surpresa: concentração de energia eletromagnética.

Uma equipa de físicos alemães e russos estudava as propriedades da Grande Pirâmide, quando descobriu que a construção pode focar energia eletromagnética dentro das suas câmaras ocultas, direcionando as ondas eletromagnéticas para o seu inferior, na base da pirâmide.

Construída no planalto de Gizé, no terceiro milénio antes de Cristo, pelo faraó Quéops, a Grande Pirâmide tem 138,8 metros de altura e é uma das maiores e mais altas estruturas construída pelo homem.


No decorrer dos últimos dois séculos, cientistas descobriram quatro câmaras na Grande Pirâmide. Numa delas, especula-se que existam os restos mumificados do próprio faraó Quéops; na segunda, estarão os restos mortais da sua esposa; a terceira será uma armadilha para invasores do túmulo e, por fim, a quarta foi descoberta pelos físicos.

Nos corredores que conduziam à Câmara do Faraó, havia estranhos canais e estruturas que os cientistas modernos consideram ser elementos de um antigo “sistema de segurança”, que protegia o soberano contra os possíveis profanadores.

Segundo explica Andrei Yevlyukhin, coordenador da pesquisa da Universidade de São Petersburgo de Tecnologia da Informação, Mecânica e Ótica, a Pirâmide de Quéops e as suas “primas” reúnem todo o tipo de propriedades “mágicas” – incluindo a capacidade de “concentrar energia cósmica” e outros fenómenos não científicos.

De acordo com os cientistas, que publicaram a pesquisa no Journal of Applied Physics no passado dia 20 de julho, a Grande Pirâmide, assim como outras construções feitas pelo Homem, poderá atuar como um ressonador, focalizando e amplificando ondas proporcionais ao tamanho dos próprios objetos.

Na física, entende-se como um ressonador um dispositivo que replica uma ressonância ou um comportamento ressonante. Ou seja, um dispositivo que oscila naturalmente a determinadas frequências – as ressonâncias -, com maiores ou menores amplitudes.

No caso em particular da pirâmide de Gizé, os cientistas examinavam ondas com comprimento de onda entre 200 a 600 metros – o valor que muitas estações de rádio utilizam.

Através de um modelo computorizado da Grande Pirâmide, os cientistas bombardearam a construção com ondas de rádio para avaliar como interagiam com a totalidade da pirâmide e com os seus elementos em particular.

De acordo com os cálculos dos físicos, a pirâmide interage com estas ondas de rádio, acumulando a sua energia dentro da Câmara do Faraó, redirecionando-a depois para a camada inferior, onde está localizada a 3.ª câmara. Esta interação afeta sobretudo as ondas com um comprimento de onda de 230 a 333 metros.

Os investigadores acreditam que a Grande Pirâmide e as suas “primas” podem ainda interagir mais intensamente com outros tipos de ondas, – ideia que precisa ainda de verificação.

Aplicações práticas, nanopartículas
Os egípcios estariam longe de pensar que esta peculiaridade no design fosse capaz de interagir com ondas eletromagnéticas mas, na verdade, esta pesquisa pode ser importante para o estudo de nano-partículas no futuro.

“As aplicações de métodos físicos modernos e as abordagens para a investigação das propriedades das pirâmides são importantes e produtivas“, consideraram os físicos.

Embora esta pesquisa seja totalmente teórica e, por isso, seja difícil saber o que esperar, os cientistas esperam criar um efeito semelhante em nanoescala.

“Escolhendo um material com propriedades eletromagnéticas adequadas, podemos obter nanopartículas piramidais com aplicação prática em nanossensores e células solares efetivas”, explica Polina Kapitainova, física da ITMO University, ao Science Alert.

Os segredos desta estrutura secular podem assim, por exemplo, ser usados para criar nanopartículas que focalizam a luz, e não as ondas de rádio, permitindo desenvolver computadores leves e outros “aparelhos do futuro”.

“A radiação eletromagnética tem um papel muito importante no nosso quotidiano, e na realidade usamos vários tipos de energia eletromagnética todos os dias”, explica a investigadora Antonija Grubisic-Cabo, da Monash University, na Austrália.

Com efeito, as nossas próprias casas estão inundadas de radiação eletromagnética – seja a luz que vemos, ou a rede wi-fi que lhe permite estar a ler este artigo – que, todos nós sabemos, tem o péssimo hábito de evitar chegar a alguns dos cantos da casa.

Assim, talvez devêssemos pensar em construir as nossas casas com os telhados em bico.

https://zap.aeiou.pt/grande-piramide-gize-pode-ter-energia-eletromagnetica-212731

Comentários

Notícias mais vistas:

Esta cidade tem casas à venda por 12.000 euros, procura empreendedores e dá cheques bebé de 1.000 euros. Melhor, fica a duas horas de Portugal

 Herreruela de Oropesa, uma pequena cidade em Espanha, a apenas duas horas de carro da fronteira com Portugal, está à procura de novos moradores para impulsionar sua economia e mercado de trabalho. Com apenas 317 habitantes, a cidade está inscrita no Projeto Holapueblo, uma iniciativa promovida pela Ikea, Redeia e AlmaNatura, que visa incentivar a chegada de novos residentes por meio do empreendedorismo. Para atrair interessados, a autarquia local oferece benefícios como arrendamento acessível, com valores médios entre 200 e 300 euros por mês. Além disso, a aquisição de imóveis na região varia entre 12.000 e 40.000 euros. Novas famílias podem beneficiar de incentivos financeiros, como um cheque bebé de 1.000 euros para cada novo nascimento e um vale-creche que cobre os custos da educação infantil. Além das vantagens para famílias, Herreruela de Oropesa promove incentivos fiscais para novos moradores, incluindo descontos no Imposto Predial e Territorial Urbano (IBI) e benefícios par...

"A NATO morreu porque não há vínculo transatlântico"

 O general Luís Valença Pinto considera que “neste momento a NATO morreu” uma vez que “não há vínculo transatlântico” entre a atual administração norte-americana de Donald Trump e as nações europeias, que devem fazer “um planeamento de Defesa”. “Na minha opinião, neste momento, a menos que as coisas mudem drasticamente, a NATO morreu, porque não há vínculo transatlântico. Como é que há vínculo transatlântico com uma pessoa que diz as coisas que o senhor Trump diz? Que o senhor Vance veio aqui à Europa dizer? O que o secretário da Defesa veio aqui à Europa dizer? Não há”, defendeu o general Valença Pinto. Em declarações à agência Lusa, o antigo chefe do Estado-Maior-General das Forças Armadas, entre 2006 e 2011, considerou que, atualmente, ninguém “pode assumir como tranquilo” que o artigo 5.º do Tratado do Atlântico Norte – que estabelece que um ataque contra um dos países-membros da NATO é um ataque contra todos - “está lá para ser acionado”. Este é um dos dois artigos que o gener...

Armazenamento holográfico

 Esta técnica de armazenamento de alta capacidade pode ser uma das respostas para a crescente produção de dados a nível mundial Quando pensa em hologramas provavelmente associa o conceito a uma forma futurista de comunicação e que irá permitir uma maior proximidade entre pessoas através da internet. Mas o conceito de holograma (que na prática é uma técnica de registo de padrões de interferência de luz) permite que seja explorado noutros segmentos, como o do armazenamento de dados de alta capacidade. A ideia de criar unidades de armazenamento holográficas não é nova – o conceito surgiu na década de 1960 –, mas está a ganhar nova vida graças aos avanços tecnológicos feitos em áreas como os sensores de imagem, lasers e algoritmos de Inteligência Artificial. Como se guardam dados num holograma? Primeiro, a informação que queremos preservar é codificada numa imagem 2D. Depois, é emitido um raio laser que é passado por um divisor, que cria um feixe de referência (no seu estado original) ...