Avançar para o conteúdo principal

Combustível do futuro? Entenda os veículos a hidrogênio, a terceira via entre elétricos e convencionais


Em meio à grande discussão sobre o futuro do motor a combustão interna versus elétrico ou híbrido diante da crise climática, as notícias sobre outra tecnologia que corre em paralelo acabam meio deixadas de lado. Falamos dos veículos a hidrogênio.

O que é hidrogênio?

Hidrogênio é o elemento químico mais simples e leve de todos, formado por um próton e um elétron, sem nêutrons. Famosamente é um componente da água, junto com o oxigênio (H₂O) – o nome vem daí; hidrogênio significa “o que gera água”. Mas não se parece em nada com água: é um gás altamente inflamável.

Em química, a forma pode ser mais importante que os ingredientes: adicionando um átomo de oxigênio, no lugar de água temos peróxido de hidrogênio (H₂O₂), veneno e potente corrosivo se concentrado, que os fabricantes preferem chamar com o nome inofensivo de água oxigenada.

Assim, hidrogênio puro (H₂), diferente da água, tem potencial energético – e quando você ler por aí mais uma matéria espertinha sobre “carro a água”, pode apostar: é movido a hidrogênio retirado da água, não à água. Isso muda tudo.

Ele entra em combustão (pega fogo) ao reagir com o oxigênio, gerando muito calor e, no lugar de dióxido de carbono (o infame CO₂) gerado ao queimar gasolina, diesel ou etanol, o resíduo dessa reação é água.

Essa combustão é tão poderosa que hidrogênio é um dos combustíveis de foguete mais comuns. De fato, o que você observa abaixo, no lançamento do foguete Saturno V, que levaria a Apollo 11 para a Lua, é água sendo gerada pela queima de hidrogênio:



Nem todo hidrogênio é limpo

Faz sentido usar esse poder todo para mover carros e aviões. Mais ainda porque, como o hidrogênio emite água e não dióxido de carbono, em tese, não contribui para o aquecimento global.

Em tese, porque não é bem assim. O hidrogênio, em termos ambientais, se divide em verde, azul e cinza. Não é a cor do gás, que não tem cor nenhuma. Os três são exatamente a mesma coisa: H₂ estocado em tanques no estado líquido. A diferença é a origem.

O hidrogênio verde é obtido por eletrólise. A água (H₂O) recebe uma corrente 

elétrica e se separa em seus dois componentes: oxigênio (O) e hidrogênio (H₂). O hidrogênio é tão limpo quanto a fonte de eletricidade for: se é eólica ou nuclear, por exemplo, é neutro em emissões; se é uma termelétrica a carvão, é pior que gasolina. Exatamente como acontece com carros elétricos: não resolve nada se a fonte de eletricidade for suja.

Os hidrogênios azul e cinza são obtidos através de combustíveis fósseis: geralmente gás natural, mas pode ser muita coisa; até carvão é possível. Às vezes, outras cores são usadas no lugar de cinza, para processos particularmente sujos, como marrom (carvão lignite) ou preto (carvão bituminoso). Mas a ideia é a mesma: é um hidrogênio vindo de combustíveis fósseis.

No processo chamado de reforma de hidrogênio, o combustível é misturado com vapor de água e aquecido a 800º C. O resultado é dióxido de carbono (o infame CO₂) e hidrogênio. Assim, a emissão de gás estufa do hidrogênio “sujo” aconteceu já ao ser criado, não ao ser usado.

A diferença de azul e cinza (ou preto ou marrom) é que, no processo azul, esse dióxido de carbono não é lançado na atmosfera, mas estocado embaixo da terra. Mas isso tem um custo, e joga o preço lá em cima.

Atualmente, segundo dados da Agência de Proteção Ambiental dos Estados Unidos, 98% do hidrogênio produzido no mundo não é verde nem azul. É tudo sujo. Mas a ideia, se é para usar hidrogênio como saída para a crise climática, é, obviamente, migrar para as outras duas cores.

Como o motor a hidrogênio se compara com o elétrico?

Há vantagens em usar um combustível material no lugar de eletricidade. A mais óbvia é a velocidade de carregamento: encher um tanque de hidrogênio leva de 3 a 5 minutos. Quase igual a encher um com combustível convencional. Um Tesla Supercharger leva de 1 hora e 15 minutos para “encher” uma bateria de 0% a 100%, em condições ideais.

Opcionalmente, é possível trocar as baterias vazias por outras carregadas, mas baterias são pesadas e o processo é bem menos cômodo que encher um tanque.

A outra vantagem de combustíveis materiais é a densidade energética. Energia é energia: não importa se na forma elétrica ou em combustão, o trabalho necessário para mover um carro ou avião a certa velocidade é igual. Assim, é possível comparar o quanto de energia vai num tanque ou na bateria. E baterias perdem feio.

Uma bateria de íon de lítio, o tipo mais comuns em carros, é capaz de armazenar entre 100 a 265 Watts-hora por cada quilo (Wh/kg) de material. Gasolina contém 12.889 Wh/kg, etanol 8.333 Wh/kg e querosene de aviação, 12.000 Wh/kg. Hidrogênio, por sua vez, vence todos, com incríveis 39.405,6 Wh/kg. Isto é, cada quilo de hidrogênio que um carro carrega tem a mesma energia estocada em uma bateria de pelo menos 186 kg, ou até 400 kg.

Exemplo prático: um carro a combustão interna compacto tem um tanque tipicamente de 50 litros. Como gasolina pesa 0,71 kg/l, o carro sai carregando 35,5 kg em energia. Um Tesla Model 3 tem 480 kg de bateria.

Isso faz os elétricos parecerem ruins? Há outro lado. Parte dessa diferença de peso é compensada pelo motor: um motor elétrico é muito mais leve que um a combustão interna. O motor do Tesla Model S básico pesa 35 kg e gera 362 cv. Um motor a combustão interna na mesma faixa, como o Honda 2.0T K20C4 Turbo, com 306 cv, pesa 186 kg, enquanto outros superam os 300 kg.

E elétricos, mesmo carregando peso a mais, se mostraram viáveis porque motores elétricos são muito, muito mais eficientes em aproveitar a energia que é injetada neles que motores a combustão interna. Motores elétricos são até 8 vezes mais eficientes que motores a combustão em usar a mesma quantidade de energia.

Veículos no céu: combustão e célula de hidrogênio

Veículos a hidrogênio podem ter motores a combustão interna ou a células de hidrogênio. No primeiro caso, é um motor fundamentalmente idêntico a um motor convencional. No segundo, uma reação química na célula gera eletricidade, que alimenta um motor elétrico.

Como motores elétricos são tão mais eficientes, a aposta em carros a hidrogênio é que, se a tecnologia vingar para carros, serão principalmente elétricos. Simplesmente gastariam uma fração do combustível.

Mas a coisa muda de figura quando chegamos a aviões. Um avião precisa de muito mais energia que um carro. Aviões de longa distância decolam carregando por volta do próprio peso em combustível.

É inviável transformar a capacidade energética com que um, digamos, Boeing 777 decola em bateria. Mas é viável para aviões com menor alcance e movidos a hélice, seja usando células ou baterias ultra-eficientes. Para transporte em menor distância, como dentro das cidades, a hélice deve ter um belo revival.

Jato é diferente

Mas um jato como o 777 é diferente. Sua velocidade superior é produzida pela queima de combustível numa câmara de ar comprimido, e essa queima faz esse ar se expandir, criando o jato de ar que move o veículo direta e indiretamente, ao mover o fan (a ventoinha na frente do motor). Um motor a jato é, assim, movido diretamente pelo fogo.

Para um jato, salvo tecnologias ainda especulativas, eletricidade não é opção. A boa notícia é que usar hidrogênio não tem mistério nenhum: jatos assim já voavam há décadas. O Tupolev Tu-155 da União Soviética, de 1988, foi um deles.

A razão de não vermos jatos a hidrogênio por aí está num aparente paradoxo físico: não é só em peso que se mede a conveniência de um combustível, mas volume. Se hidrogênio é super leve, é também super “espaçoso”. Se 1 kg de gasolina cabe numa garrafa de refrigerante, 1 kg de hidrogênio está mais para um garrafão do escritório: precisa de 14 litros de espaço.

Assim, um veículo a hidrogênio precisa de um espaço enorme para levar seu combustível: quatro vezes maior que o mesmo volume em querosene. Um carro a hidrogênio pode dar conta do espaço extra sacrificando espaço no bagageiro. Mas um avião? Quem teve que andar com as pernas dobradas num voo comercial sabe que espaço não sobra neles.

Por isso projetos de jato a hidrogênio tendem a ser grandes. Podem ser rechonchudos, como o Airbus Zero-e, que ilustra esta matéria:

Veículo a hidrogênio: Airbus Zero-E
Veículo a hidrogênio: Airbus Zero-E (Airbus/Divul;ação)

Ou podem ser ultra-longos, como o conceito hipersônico Reaction Engines Lapcat A2:

Avião a hidrog6enio Reaction Engines Lapcate A2
Avião a hidrog6enio Reaction Engines Lapcate A2 (Reaction Engines/Divulgação)

Com 146 metros de comprimento, ele seria, de longe, o avião mais longo do mundo e só carregaria 300 pessoas. Mas esse veículo, usando o próprio peso em hidrogênio, seria ainda assim mais leve ao decolar que um Airbus A380 ou um Boeing 747. 


Veículos a hidrogênio são o caminho do futuro? - Olhar Digital


Comentários

Notícias mais vistas:

"Assinatura" típica do Kremlin: desta vez foi pior e a Rússia até atacou instalações da UE

Falamos de "um dos maiores ataques combinados" contra a Ucrânia, que também atingiu representações de países da NATO Kiev foi novamente bombardeada durante a noite. Foi o segundo maior ataque aéreo da Rússia desde a invasão total à Ucrânia. Morreram pelo menos 21 pessoas, incluindo quatro crianças, de acordo com as autoridades. Os edifícios da União Europeia e do British Council na cidade foram atingidos pelos ataques, o que levou a UE e o Reino Unido a convocarem os principais diplomatas russos. Entre os mortos encontram-se crianças de 2, 17 e 14 anos, segundo o chefe da Administração Militar da cidade de Kiev. A força aérea ucraniana afirmou que o Kremlin lançou 629 armas de ataque aéreo contra o país durante a noite, incluindo 598 drones e 31 mísseis. Yuriy Ihnat, chefe de comunicações da Força Aérea, disse à CNN que os foi “um dos maiores ataques combinados” contra o país. O ministério da Defesa da Rússia declarou que atacou “empresas do complexo militar-industrial e base...

Avião onde viajava Von der Leyen afetado por interferência de GPS da Rússia

 O GPS do avião onde viajava a presidente da Comissão Europeia, Ursula von der Leyen, foi afetado por uma interferência que as autoridades suspeitam ser de origem russa, no domingo, forçando uma aterragem com mapas analógicos. Não é claro se o avião seria o alvo deliberado. A aeronave aterrou em segurança no Aeroporto Internacional de Plovdiv, no sul da Bulgária, sem ter de alterar a rota. "Podemos de facto confirmar que houve bloqueio do GPS", disse a porta-voz da Comissão Europeia, Arianna Podesta, numa conferência de imprensa em Bruxelas. "Recebemos informações das autoridades búlgaras de que suspeitam que se deveu a uma interferência flagrante da Rússia". A região tem sofrido muitas destas atividades, afirmou o executivo comunitário, acrescentando que sancionou várias empresas que se acredita estarem envolvidas. O governo búlgaro confirmou o incidente. "Durante o voo que transportava a presidente da Comissão Europeia, Ursula von der Leyen, para Plovdiv, o s...

O maior aliado da Rússia a defender a Ucrânia: eis a proposta de Trump

 Proposta de Trump foi apresentada aos aliados e à Ucrânia na reunião na Casa Branca. A ideia não caiu nada bem, até porque já tinha sido sugerida anteriormente por Putin. Tropas norte-americanas nunca farão parte das garantias de segurança a dar à Ucrânia e isso já se sabia, mas a proposta do presidente dos Estados Unidos é, no mínimo, inquietante para Kiev, já que passa por colocar soldados amigos da Rússia a mediar o conflito. De acordo com o Financial Times, que cita quatro fontes familiarizadas com as negociações, o presidente dos Estados Unidos sugeriu que sejam destacadas tropas chinesas como forças da paz num cenário pós-guerra. Uma proposta que, segundo as mesmas fontes, vai ao encontro do que Vladimir Putin sugeriu, até porque a China é um dos mais fortes aliados da Rússia, mesmo que tenha mantido sempre uma postura ambígua em relação ao que se passa na Ucrânia. A proposta de Trump passa por convidar a China a enviar pacificadores que monitorizem a situação a partir de um...