Avançar para o conteúdo principal

Combustível do futuro? Entenda os veículos a hidrogênio, a terceira via entre elétricos e convencionais


Em meio à grande discussão sobre o futuro do motor a combustão interna versus elétrico ou híbrido diante da crise climática, as notícias sobre outra tecnologia que corre em paralelo acabam meio deixadas de lado. Falamos dos veículos a hidrogênio.

O que é hidrogênio?

Hidrogênio é o elemento químico mais simples e leve de todos, formado por um próton e um elétron, sem nêutrons. Famosamente é um componente da água, junto com o oxigênio (H₂O) – o nome vem daí; hidrogênio significa “o que gera água”. Mas não se parece em nada com água: é um gás altamente inflamável.

Em química, a forma pode ser mais importante que os ingredientes: adicionando um átomo de oxigênio, no lugar de água temos peróxido de hidrogênio (H₂O₂), veneno e potente corrosivo se concentrado, que os fabricantes preferem chamar com o nome inofensivo de água oxigenada.

Assim, hidrogênio puro (H₂), diferente da água, tem potencial energético – e quando você ler por aí mais uma matéria espertinha sobre “carro a água”, pode apostar: é movido a hidrogênio retirado da água, não à água. Isso muda tudo.

Ele entra em combustão (pega fogo) ao reagir com o oxigênio, gerando muito calor e, no lugar de dióxido de carbono (o infame CO₂) gerado ao queimar gasolina, diesel ou etanol, o resíduo dessa reação é água.

Essa combustão é tão poderosa que hidrogênio é um dos combustíveis de foguete mais comuns. De fato, o que você observa abaixo, no lançamento do foguete Saturno V, que levaria a Apollo 11 para a Lua, é água sendo gerada pela queima de hidrogênio:



Nem todo hidrogênio é limpo

Faz sentido usar esse poder todo para mover carros e aviões. Mais ainda porque, como o hidrogênio emite água e não dióxido de carbono, em tese, não contribui para o aquecimento global.

Em tese, porque não é bem assim. O hidrogênio, em termos ambientais, se divide em verde, azul e cinza. Não é a cor do gás, que não tem cor nenhuma. Os três são exatamente a mesma coisa: H₂ estocado em tanques no estado líquido. A diferença é a origem.

O hidrogênio verde é obtido por eletrólise. A água (H₂O) recebe uma corrente 

elétrica e se separa em seus dois componentes: oxigênio (O) e hidrogênio (H₂). O hidrogênio é tão limpo quanto a fonte de eletricidade for: se é eólica ou nuclear, por exemplo, é neutro em emissões; se é uma termelétrica a carvão, é pior que gasolina. Exatamente como acontece com carros elétricos: não resolve nada se a fonte de eletricidade for suja.

Os hidrogênios azul e cinza são obtidos através de combustíveis fósseis: geralmente gás natural, mas pode ser muita coisa; até carvão é possível. Às vezes, outras cores são usadas no lugar de cinza, para processos particularmente sujos, como marrom (carvão lignite) ou preto (carvão bituminoso). Mas a ideia é a mesma: é um hidrogênio vindo de combustíveis fósseis.

No processo chamado de reforma de hidrogênio, o combustível é misturado com vapor de água e aquecido a 800º C. O resultado é dióxido de carbono (o infame CO₂) e hidrogênio. Assim, a emissão de gás estufa do hidrogênio “sujo” aconteceu já ao ser criado, não ao ser usado.

A diferença de azul e cinza (ou preto ou marrom) é que, no processo azul, esse dióxido de carbono não é lançado na atmosfera, mas estocado embaixo da terra. Mas isso tem um custo, e joga o preço lá em cima.

Atualmente, segundo dados da Agência de Proteção Ambiental dos Estados Unidos, 98% do hidrogênio produzido no mundo não é verde nem azul. É tudo sujo. Mas a ideia, se é para usar hidrogênio como saída para a crise climática, é, obviamente, migrar para as outras duas cores.

Como o motor a hidrogênio se compara com o elétrico?

Há vantagens em usar um combustível material no lugar de eletricidade. A mais óbvia é a velocidade de carregamento: encher um tanque de hidrogênio leva de 3 a 5 minutos. Quase igual a encher um com combustível convencional. Um Tesla Supercharger leva de 1 hora e 15 minutos para “encher” uma bateria de 0% a 100%, em condições ideais.

Opcionalmente, é possível trocar as baterias vazias por outras carregadas, mas baterias são pesadas e o processo é bem menos cômodo que encher um tanque.

A outra vantagem de combustíveis materiais é a densidade energética. Energia é energia: não importa se na forma elétrica ou em combustão, o trabalho necessário para mover um carro ou avião a certa velocidade é igual. Assim, é possível comparar o quanto de energia vai num tanque ou na bateria. E baterias perdem feio.

Uma bateria de íon de lítio, o tipo mais comuns em carros, é capaz de armazenar entre 100 a 265 Watts-hora por cada quilo (Wh/kg) de material. Gasolina contém 12.889 Wh/kg, etanol 8.333 Wh/kg e querosene de aviação, 12.000 Wh/kg. Hidrogênio, por sua vez, vence todos, com incríveis 39.405,6 Wh/kg. Isto é, cada quilo de hidrogênio que um carro carrega tem a mesma energia estocada em uma bateria de pelo menos 186 kg, ou até 400 kg.

Exemplo prático: um carro a combustão interna compacto tem um tanque tipicamente de 50 litros. Como gasolina pesa 0,71 kg/l, o carro sai carregando 35,5 kg em energia. Um Tesla Model 3 tem 480 kg de bateria.

Isso faz os elétricos parecerem ruins? Há outro lado. Parte dessa diferença de peso é compensada pelo motor: um motor elétrico é muito mais leve que um a combustão interna. O motor do Tesla Model S básico pesa 35 kg e gera 362 cv. Um motor a combustão interna na mesma faixa, como o Honda 2.0T K20C4 Turbo, com 306 cv, pesa 186 kg, enquanto outros superam os 300 kg.

E elétricos, mesmo carregando peso a mais, se mostraram viáveis porque motores elétricos são muito, muito mais eficientes em aproveitar a energia que é injetada neles que motores a combustão interna. Motores elétricos são até 8 vezes mais eficientes que motores a combustão em usar a mesma quantidade de energia.

Veículos no céu: combustão e célula de hidrogênio

Veículos a hidrogênio podem ter motores a combustão interna ou a células de hidrogênio. No primeiro caso, é um motor fundamentalmente idêntico a um motor convencional. No segundo, uma reação química na célula gera eletricidade, que alimenta um motor elétrico.

Como motores elétricos são tão mais eficientes, a aposta em carros a hidrogênio é que, se a tecnologia vingar para carros, serão principalmente elétricos. Simplesmente gastariam uma fração do combustível.

Mas a coisa muda de figura quando chegamos a aviões. Um avião precisa de muito mais energia que um carro. Aviões de longa distância decolam carregando por volta do próprio peso em combustível.

É inviável transformar a capacidade energética com que um, digamos, Boeing 777 decola em bateria. Mas é viável para aviões com menor alcance e movidos a hélice, seja usando células ou baterias ultra-eficientes. Para transporte em menor distância, como dentro das cidades, a hélice deve ter um belo revival.

Jato é diferente

Mas um jato como o 777 é diferente. Sua velocidade superior é produzida pela queima de combustível numa câmara de ar comprimido, e essa queima faz esse ar se expandir, criando o jato de ar que move o veículo direta e indiretamente, ao mover o fan (a ventoinha na frente do motor). Um motor a jato é, assim, movido diretamente pelo fogo.

Para um jato, salvo tecnologias ainda especulativas, eletricidade não é opção. A boa notícia é que usar hidrogênio não tem mistério nenhum: jatos assim já voavam há décadas. O Tupolev Tu-155 da União Soviética, de 1988, foi um deles.

A razão de não vermos jatos a hidrogênio por aí está num aparente paradoxo físico: não é só em peso que se mede a conveniência de um combustível, mas volume. Se hidrogênio é super leve, é também super “espaçoso”. Se 1 kg de gasolina cabe numa garrafa de refrigerante, 1 kg de hidrogênio está mais para um garrafão do escritório: precisa de 14 litros de espaço.

Assim, um veículo a hidrogênio precisa de um espaço enorme para levar seu combustível: quatro vezes maior que o mesmo volume em querosene. Um carro a hidrogênio pode dar conta do espaço extra sacrificando espaço no bagageiro. Mas um avião? Quem teve que andar com as pernas dobradas num voo comercial sabe que espaço não sobra neles.

Por isso projetos de jato a hidrogênio tendem a ser grandes. Podem ser rechonchudos, como o Airbus Zero-e, que ilustra esta matéria:

Veículo a hidrogênio: Airbus Zero-E
Veículo a hidrogênio: Airbus Zero-E (Airbus/Divul;ação)

Ou podem ser ultra-longos, como o conceito hipersônico Reaction Engines Lapcat A2:

Avião a hidrog6enio Reaction Engines Lapcate A2
Avião a hidrog6enio Reaction Engines Lapcate A2 (Reaction Engines/Divulgação)

Com 146 metros de comprimento, ele seria, de longe, o avião mais longo do mundo e só carregaria 300 pessoas. Mas esse veículo, usando o próprio peso em hidrogênio, seria ainda assim mais leve ao decolar que um Airbus A380 ou um Boeing 747. 


Veículos a hidrogênio são o caminho do futuro? - Olhar Digital


Comentários

Notícias mais vistas:

A otimização de energia do Paquistão via mineração de bitcoin recebe 3 meses de teste após a rejeição parcial do FMI

  FMI rejeita parcialmente proposta do Paquistão para mineração de Bitcoin com eletricidade subsidiada O Fundo Monetário Internacional (FMI) recusou-se a endossar totalmente a proposta do Paquistão para uma tarifa de eletricidade subsidiada destinada a impulsionar operações de mineração de Bitcoin, segundo noticiou o portal local Lucro a 3 de julho. De acordo com o relatório, Fakhray Alam Irfan, presidente do Comité Permanente de Energia do Senado do Paquistão, revelou que o FMI aprovou apenas um período de alívio de três meses — metade dos seis meses inicialmente propostos — alegando riscos de distorção do mercado e pressão adicional sobre o já sobrecarregado setor energético do país. Esta rejeição parcial reflete o ceticismo mais amplo do FMI relativamente à adoção de criptomoedas a nível nacional. Alertas semelhantes foram dirigidos a outros países, como El Salvador, onde o FMI desaconselhou o envolvimento direto do governo na mineração e acumulação de Bitcoin. Importa referir ...

Aeroporto: há novidades

 Nenhuma conclusão substitui o estudo que o Governo mandou fazer sobre a melhor localização para o aeroporto de Lisboa. Mas há novas pistas, fruto do debate promovido pelo Conselho Económico e Social e o Público. No quadro abaixo ficam alguns dos pontos fortes e fracos de cada projeto apresentados na terça-feira. As premissas da análise são estas: IMPACTO NO AMBIENTE: não há tema mais crítico para a construção de um aeroporto em qualquer ponto do mundo. Olhando para as seis hipóteses em análise, talvez apenas Alverca (que já tem uma pista, numa área menos crítica do estuário) ou Santarém (numa zona menos sensível) escapem. Alcochete e Montijo são indubitavelmente as piores pelas consequências ecológicas em redor. Manter a Portela tem um impacto pesado sobre os habitantes da capital - daí as dúvidas sobre se se deve diminuir a operação, ou pura e simplesmente acabar. Nem o presidente da Câmara, Carlos Moedas, consegue dizer qual escolhe... CUSTO DE INVESTIMENTO: a grande novidade ve...

J.K. Rowling

 Aos 17 anos, foi rejeitada na faculdade. Aos 25 anos, sua mãe morreu de doença. Aos 26 anos, mudou-se para Portugal para ensinar inglês. Aos 27 anos, casou. O marido abusou dela. Apesar disso, sua filha nasceu. Aos 28 anos, divorciou-se e foi diagnosticada com depressão severa. Aos 29 anos, era mãe solteira que vivia da segurança social. Aos 30 anos, ela não queria estar nesta terra. Mas ela dirigiu toda a sua paixão para fazer a única coisa que podia fazer melhor do que ninguém. E foi escrever. Aos 31 anos, finalmente publicou seu primeiro livro. Aos 35 anos, tinha publicado 4 livros e foi nomeada Autora do Ano. Aos 42 anos, vendeu 11 milhões de cópias do seu novo livro no primeiro dia do lançamento. Esta mulher é JK Rowling. Lembras de como ela pensou em suicídio aos 30 anos? Hoje, Harry Potter é uma marca global que vale mais de $15 bilhões. Nunca desista. Acredite em você mesmo. Seja apaixonado. Trabalhe duro. Nunca é tarde demais. Esta é J.K. Rowling. J. K. Rowling – Wikipédi...