Avançar para o conteúdo principal

AI Generates The ‘Most Stereotypical Person’ From 22 Countries.



Artificial Intelligence has been continuously astonishing us with its abilities. Recently, it’s been making astonishing progress in comprehending natural language and generating text-based responses, as seen with ChatGPT. Not a long time ago, Microsoft unveiled its AI integration with the Edge browser and Bing search engine. Google also presented its own solution, although it was not as successful as its competitors.

In addition to written language, there has been a lot of discussion in recent years about the advancements in artificial intelligence for imaging technology, which has produced remarkable outcomes. There are various tools such as DALL-E 2, Stable Diffusion, and Midjourney, among others, that have the capability to generate new images and even recreate art.

Reddit user WeirdLime used an image generator Midjourney to craft representations of the most “stereotypical” men and women from different European countries, and the reactions from viewers have been quite noteworthy.

1. Iceland

Iceland

2. Ukraine

Ukraine

3. Denmark

Denmark

4. Finland

Finland

AI’s potential to reinforce stereotypes borders on the dangerous. It varies depending on numerous factors in its development and deployment. The degree to which AI perpetuates biases hinges on the quality and diversity of training data, the algorithms employed, and the awareness of developers regarding ethical concerns. When AI systems are trained on biased data or designed with algorithmic flaws, they can inadvertently amplify existing stereotypes, leading to biased outcomes in various applications, from hiring algorithms to content recommendation systems. However, with proactive measures like diverse training data, careful algorithm design, and ethical guidelines, it is possible to mitigate these issues and harness the power of AI to foster fairness and inclusivity rather than perpetuate harmful stereotypes.

5. France

France

6. Ireland

Ireland

7. Sweden

Sweden

8. Portugal

Portugal

9. Germany

Germany

Training AI to avoid reinforcing stereotypes requires a multifaceted approach. Central to this effort is the use of diverse and representative training data, ensuring that the dataset encompasses a wide range of demographics and perspectives. Prior to training, thorough data preprocessing should be conducted to identify and mitigate biases. Regular audits and testing are essential to detect and quantify any bias that may emerge during the training process. Employing fair sampling techniques and bias-reduction algorithms can further contribute to minimizing bias. Moreover, establishing clear ethical guidelines for AI development, fostering diverse development teams, and designing transparent and explainable models are vital components of a strategy aimed at creating AI systems that actively counteract, rather than perpetuate, stereotypes. This holistic approach reflects a commitment to harnessing AI’s potential while upholding principles of fairness, non-discrimination, and equity.

10. Greece

Greece

11. Netherlands

Netherlands

12. Czechia

Czechia

13. Poland

Poland

14. Austria

Austria

15. Belgium

Belgium

16. Croatia

Croatia

17. Italy

Italy

18. Norway

Norway

19. Slovenia

Slovenia

20. Spain

Spain

21. England

England

22. Switzerland

Switzerland

 


AI Generates The ‘Most Stereotypical Person’ From 22 Countries. - The Language Nerds


Comentários

Notícias mais vistas:

Constância e Caima

  Fomos visitar Luís Vaz de Camões a Constância, ver a foz do Zêzere, e descobrimos que do outro lado do arvoredo estava escondida a Caima, Indústria de Celulose. https://www.youtube.com/watch?v=w4L07iwnI0M&list=PL7htBtEOa_bqy09z5TK-EW_D447F0qH1L&index=16

Porque é que os links são normalmente azuis?

WWW concept with hand pressing a button on blurred abstract background Se navega na Internet todos os dias já reparou certamente numa constante: as hiperligações são quase sempre azuis. Este pequeno detalhe é tão comum que poucos param para pensar na sua origem. Mas porquê azul? Porquê não vermelho, verde ou laranja? A resposta remonta aos anos 80, e envolve investigação científica, design de interfaces e… um professor com uma ideia brilhante. Vamos então explicar-lhe qual a razão pela qual os links são normalmente azuis. Porque é que os links são normalmente azuis? Antes da Web, tudo era texto Nos primórdios da Internet, muito antes do aparecimento dos browsers modernos, tudo se resumia a menus de texto longos e difíceis de navegar. Era necessário percorrer intermináveis listas de ficheiros para chegar à informação pretendida. Até que, em 1985, Ben Shneiderman, professor da Universidade de Maryland, e o seu aluno Dan Ostroff, apresentaram uma ideia revolucionária: menus embutidos, que...

Foram necessários 250 anos para construir o que Trump está a tentar destruir

Os esforços do presidente Donald Trump para reformular o governo federal o máximo possível e o mais rapidamente possível destruiriam agências que existem há décadas ou mais. Os seus planos mais amplos reformulariam elementos da infraestrutura governamental que existem há séculos. De Benjamin Franklin a John F. Kennedy e de Richard Nixon a Barack Obama, foi necessária toda a história dos Estados Unidos para construir parte do que Trump tem falado em tentar destruir, privatizar ou reformular. E isso sem contar as reformas que ele está a planear para programas de segurança social, como a  Previdência Social  e o Medicare,  que ele afirma , sem provas, estarem  cheios de fraudes , mas que também estão em caminhos objetivamente  insustentáveis . Serviço Postal dos EUA Estes dois selos postais dos Estados Unidos, com as imagens de Benjamin Franklin e George Washington, entraram em vigor a 1 de julho de 1847.  (Museu Postal Nacional Smithsonian) Fundado em 1775 Os...